
A BEGINNER'S
GUIDE TO AWS

LEARN THE BASICS, BECOME AN EXPERT

LEARNAWS.ORG

Welcome
Hey there!

Thank you for downloading and reading this guide. The guide contains resources that will
help you learn about the most popular AWS services.

The services currently covered in the guide are:

Amazon Simple Storage Service (S3)
Amazon Simple Queue Service (SQS)
Amazon Lambda
Amazon DynamoDB

This guide is a living a document and I will keep adding more services to it over time.

I hope you find this useful and if you have any feedback, please don't hesitate to reach out to
me via Twitter.

Happy reading!

Abhishek

https://twitter.com/abhishekray07

Amazon Simple Storage Service (S3)

What is it?
Amazon Simple Storage Service, commonly known as S3, is a fast, scalable, and durable
object-storage service. S3 can be used to store and retrieve any type and any amount of data.

How does it work?
At its core, S3 is an object-storage service. which is different from the traditional file-storage
service. Data in S3 is stored as objects. Each object contains a unique identifier, some
metadata about the object and the data itself.

Key Concepts

Buckets

An S3 bucket is conceptually similar to a folder in a file-storage system. Objects in S3 are
stored within a bucket. An S3 bucket needs to be created before data can be stored in S3.

For e.g. if there is an object with the key omgcat.png in the S3 bucket adorable-cat-
photos, then the addressable path of the object is s3://adorable-cat-
photos/omgcat.png.

Buckets are important to understand for some of the following reasons:

S3 bucket names are globally unique across all AWS accounts. For e.g. if a bucket with the
name adorable-cat-photos already exists, nobody else will be able to create a bucket
with this name.
Access Control can be implemented at bucket level
AWS billing is based on aggregate bucket sizes

Object keys

To create an object in S3, a key must be specified. This key uniquely identifies an object
within a bucket. Since S3 is an object-storage service with a flat namespace (no hierarchy), it
has no concept of folders.

The following are all valid keys for an object:

omgcatphoto.png
catvideos/omgwhatacat.mp4
photos/2020/11/11/photo-of-the-day.png

Object Metadata

There are two kinds of metadata associated with an object: system metadata and user-
defined metadata. User-defined metadata can be added when an object is created or
updated.

Some examples of system metadata are:

Object creation date

Storage class for the object
Object size in bytes

Storage classes
S3 provides multiple storage classes which are designed for different use-cases.

Standard

Ideal for frequently accessed or performance-critical data
Most expensive storage class

Intelligent-Tiering

Automatically moves objects between access tiers based on access patterns
Good for use-cases when access patterns are ambiguous

Standard Infrequent-access

Ideal for long-lived and less frequently access data
Storage is cheaper than the Standard class but there is a retrieval fee for data access

Glacier

Ideal for long-term archiving.
Configurable retrieval times (minutes to hours).

More information about Storage classes can be found here.

When to use it?
S3 is a flexible storage service and thus can be used for a variety of use-cases. Some of the
common use-cases are:

Storing static content and serving it directly to end-users: Common examples of this
are static webpages, images, videos, static web assets such as CSS or Javascript assets. S3
can also be configured with CloudFront (Amazon's CDN) to improve delivery performance
for such content.
Data Lake: S3 is ideal for storing raw, unstructured data in any format and thus can be
used as the storage layer for building a Data Lake
Logs, Backups, and snapshots: S3's infrequent access tier makes storing logs, backups,
and snapshots a good-fit. Some of the services which integrate with S3 are RDS, EBS, and
CloudTrail.

Examples
Some examples of how to use S3 for various use-cases:

How to create a blog on AWS using S3 in 3 easy steps
Build Your Data Lake on Amazon S3
Amazon RDS Snapshot Export to S3

Getting Started
The following examples will take us through some of the more common operations for S3.

https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://www.learnaws.org/2017/10/22/create-site-aws-using-s3/
https://www.youtube.com/watch?v=ccIBYUjnt74
https://www.youtube.com/watch?v=lyNGeDg6EII

Creating a bucket
CLI

aws s3 mb s3://bucket-name

Python (boto3)

s3_client = boto3.client('s3')
s3_client.create_bucket(Bucket=bucket_name)

List buckets and objects
CLI

List all buckets
aws s3 ls

List objects within bucket
aws s3 ls s3://bucket-name

Python (boto3)

s3_client = boto3.client('s3')

List all buckets
s3_client.list_buckets()

List objects within bucket
s3_client.list_objects(Bucket=bucket_name)

Delete buckets
CLI

aws s3 rb s3://bucket-name

Python (boto3)

s3_client = boto3.client('s3')
s3_client.delete_bucket(Bucket=bucket_name)

Delete objects
CLI

aws s3 rm s3://bucket-name/object-key

Python (boto3)

s3_client = boto3.client('s3')
s3_client.delete_object(Bucket=bucket_name, Key=object_key)

Copy objects
The following command can be used to move objects from a bucket or a local directory

Copy from one bucket to another
aws s3 cp s3://old-bucket/example s3://new-bucket/

Copy from local directory to bucket
aws s3 cp /tmp/filename.txt s3://bucket-name

Python (boto3)

s3_client = boto3.client('s3')

Copy object from one bucket to another
s3_client.copy_object(
 Bucket=destination_bucket,
 CopySource={"Bucket": original_bucket, "Key": object_key"}
)

Copy object from local directory to S3
s3_client.upload_file(
 Filename=local_file_path, # /tmp/filename.txt
 Bucket=bucket, # bucket-name
 Key=file_key, # filename.txt
)

Amazon Simple Queue Service (SQS)

What is it?
Amazon Simple Queue Service (SQS) is a managed, message-queue service that enables us to
build scalable and reliable systems. Queues allow services to be decoupled. They can
communicate with each other asynchronously and are especially useful when the throughput
of the producing service is different from the throughput of the consuming service.

How does it work?

SQS provides a message-queue service. To use SQS, you need the following components:

Producer(s): Producers are responsible for sending messages to a particular queue.
Messages are stored in the queue when they are sent by the producer.
Consumer(s): Consumers are responsible for retrieving and processing the messages
from a particular queue. Messages must be deleted by the consumer after processing to
ensure they aren't processed by any other consumers.

Key Concepts

SQS Visibility Timeout: Configurable period of time when a message received by one
consumer is protected from other consumers. The default timeout is 30 seconds.
Standard vs FIFO queue: SQS provides two types of queues: Standard and FIFO. Standard
queues provide best-effort ordering whereas FIFO queues provide first-in first-out
delivery.
Dead-letter Queues: Dead-letter Queues (DLQ) are used to store messages that couldn't
be processed successfully by the consumer. DLQs provide multiple benefits. They can be
used to debug any issues with the processing of problematic messages. Also, they allow
applications to continue processing the rest of the messages which don't have any issues.

Key Limits

Message Retention: Message retention is configurable between 1 minute to 14 days. The
default is 4 days.
Message Limit: A single SQS queue can contain an unlimited number of messages.
However, there are limits to the number of inflight messages (received by a consumer but
not yet deleted).
Maximum size of one message: Maximum allowed size of a single message is 256 KB.
Message format: Messages can include text data, including XML, JSON and unformatted
text.

When to use it?

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://medium.com/awesome-cloud/aws-difference-between-sqs-standard-and-fifo-first-in-first-out-queues-28d1ea5e153
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

SQS is a great fit for building reliable and scalable systems. Some use-cases where SQS fits in
well:

Event-based architectures

An event-driven architecture uses event to trigger and communicate between decoupled
services. The key component of any event-driven architecture is a queue.

Microservices-based architectures

Asynchronous communication is becoming more common in microservices-based
architectures where different microservices are decoupled and independent of each other.

How much does it cost?
SQS' pricing model is based on how much resources are used. The screenshots below show
the pricing as of Nov 2020.

SQS Pricing Model — Tips & Alternatives provides some useful tips on working with SQS.

Examples
The following resources provide examples of applications which have been built using SQS:

Scalable serverless event-driven applications using Amazon SQS & Lambda

https://medium.com/@cpackingham1/sqs-pricing-model-tips-alternatives-9292beab21da
https://youtu.be/2rikdPIFc_Q

Trax Retail: An Innovative Approach to Per-Second Scaling for SNS/SQS Message
Processing
Decouple and Scale Applications Using Amazon SQS and Amazon SNS - 2017 AWS Online
Tech Talks

Getting Started

Creating a queue
CLI

aws sqs create-queue --queue-name your-queue-name

Python (boto3)

sqs_client = boto3.client('sqs')
sqs_client.create_quque(QueueName="your-queue-name")

List queues
CLI

List all queues
aws sqs list-queues

Python (boto3)

sqs_client = boto3.client('sqs')
sqs_client.list_queues()

Delete queue
CLI

aws sqs delete-queue --queue-url https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name

Python (boto3)

sqs_client = boto3.client('sqs')
sqs_client.delete_queue(QueueUrl='https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name')

https://www.youtube.com/watch?v=oXV7z5h6qW0
https://www.youtube.com/watch?v=UesxWuZMZqI

Send message
CLI

aws sqs send-message --queue-url https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name --message-body "Sending a
message on the queue."

Python (boto3)

sqs_client = boto3.client('sqs')
sqs_client.send_message(
 QueueUrl='https://sqs.us-east-1.amazonaws.com/myaccountid/your-queue-
name',
 MessageBody='Sending a message on the queue.',
)

Receive message
CLI

Receive 1 message
aws sqs receive-message --queue-url https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name

Python (boto3)

sqs_client = boto3.client('sqs')
messages = sqs_client.receive_message(QueueUrl='https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name')

Delete message
A message can only be deleted after it has been received.

CLI

receipt-handle is sent when the message is received

aws sqs delete-message --queue-url https://sqs.us-east-
1.amazonaws.com/myaccountid/your-queue-name --receipt-handle
AQEBRXTo...q2doVA==

Python (boto3)

sqs_client = boto3.client('sqs')
sqs_client.delete_message(
 QueueUrl='https://sqs.us-east-1.amazonaws.com/myaccountid/your-
queue-name',
 ReceiptHandle='AQEBRXTo...q2doVA=='
)

CLI documentation is available here.

Boto3 documentation is available here.

https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sqs.html

AWS Lambda

What is it?
AWS Lambda is a service that lets developers run their code in the cloud without having to
host any servers. AWS Lambda is a foundational service in the serverless paradigm where
code is only run when needed and developers only pay for the resources used.

Some of the reasons why AWS Lambda is one of the most popular AWS services:

No need to manage any servers
Your application scales automatically to handle the size of the workload

How does it work?
AWS Lambda provides Functions as a service (FaaS) which developers leverage to deploy
functions that are run in response to various events.

Key concepts
Function

A function is code provided by the developer that runs in AWS Lambda. A function processes
the invocation events sent by AWS Lambda. The function takes two arguments:

Event object: contains details about the invocation event.
Context object: contains information about the Lambda runtime, such as the function
name, memory limit etc.

Execution environment

Lambda provides a secure and isolated runtime environment where your function is invoked.
The execution environment manages the resources required to run the function.

Additional information is available here.

Runtime

AWS Lambda supports functions in multiple languages through the use of runtimes. A
runtime is chosen when a function is created.

Additional information about Lambda runtimes is available here.

Trigger

Lambda functions are invoked as a response to certain actions. These actions are called
triggers. Lambda functions can be triggered by other AWS services or your own applications.
For e.g. you could trigger a function for a new object in S3.

Concurrency

Concurrency is the number of requests that a Lambda function is serving at any given time.

Cold Starts

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

A cold start happens when a Lambda function is invoked after not being used for a while.
Cold starts generally result in increased latency.

Provisioned Concurrency

Ability to keep lambda functions initialized and ready to respond to request. Reduces the
cold-start problem.

Resource Limits
AWS Lambda has some resource limits which are useful to know about. Some of the more
common resource limits are:

Maximum execution time is 15 minutes
Maximum memory allowed is 3008 MB
Maximum deployment package size is 50 MB (zipped)

All the resource limits (as of Nov 2020) are shown below:

When to use it?
AWS Lambda forms the core of the serverless architecture. Lambda lets us execute custom
functions in response to the occurrence of certain events. AWS Lambda is a good fit for the
following use-cases:

Chatbots
Image / Video Processing

Serverless Websites
ETL jobs

This is a good resource to learn more about these use-cases.

How much does it cost?
With AWS Lambda, you are only charged for what you use. The pricing is based on the
number of requests for your functions and the amount of time it takes for your code to
execute.

More details about pricing can be found here.

Examples
Wix: Serverless Platform for End-to-End Browser Testing using Chromium on AWS Lambda

Wix built a remote end-to-end browser testing platform using AWS Lambda. This platform
can run 700 different tests in parallel.

https://www.simform.com/serverless-examples-aws-lambda-use-cases/
https://aws.amazon.com/lambda/pricing/
https://youtu.be/hbz63Ve-eIY

Innovapost: Scaling to 5M Package Deliveries with Serverless

Innovapost built its package delivery pipeline on top of SQS & Lambda. Delivery messages
are sent to SQS which are then processed by Lambda and then written to RDS.

Additional Resources
The following presentations from the re:Invent conference provide good insights into how
Lambda works under the hood as well some of the best practices for Lambda:

A serverless journey: AWS Lambda under the hood
Asynchronous-processing best practices with AWS Lambda
Building microservices with AWS Lambda

https://youtu.be/wE3TmHxyRdA
https://youtu.be/xmacMfbrG28
https://youtu.be/QNnMpoD4RHM
https://youtu.be/TOn0xhev0Uk

Amazon DynamoDB

What is it?
Amazon DynamoDB is a managed NoSQL database service. DynamoDB provides a simple API
to store, access, and retrieve data.

Some of the reasons why DynamoDB is popular:

Schemaless: To create a new table, only the primary key attributes need to be defined.
On-demand capacity: DynamoDB scales up/down automatically to handle the traffic

How does it work?

Key concepts
Tables

A table is a collection of items. For e.g. you could have an Employee table which stores
information about every employee at a company.

Items

An Item is a single record in a table. An item is uniquely identified by its Primary Key. In our
previous example, an Employee would be an item in the Employees table. The primary key or
unique identifier could be their Employee ID.

Attributes

An attribute is a field or piece of data attached to an item. Examples of attributes attached
to an Employee item could be Name, Age, Office Location, etc.

Primary Key

A primary key is a unique identifier and is used to uniquely identify each item in the table.
The primary key is the only required attribute when creating a new table. It can not be empty
or null.

There are two types of primary key:

Partition key: This is a simple primary key that is unique to each item in the table.
Composite primary key: This is a combination of partition and sort key, which together is
unique to each item in the table.

Choosing the right primary key is critical for the optimal performance of DynamoDB. This
guide provides good insight into how to choose the right key for your application.

Secondary Index

Secondary indices provide the ability to query a table without using the primary key. An
application generally benefits from different access patterns and secondary indices enable
efficient data access without using the primary key.

A secondary index consists of a subset of attributes from the table.

Provisioned & On-Demand

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-partition-key-design.html

DynamoDB provides multiple pricing models:

On-demand capacity: The simplest or most straightforward pricing model. Pricing is
based on storage and requests.
Provisioned capacity: In the provisioned mode, read and write throughput capacity needs
to be set for each table. The read and write capacity specify the allowed operations per
second on the table.

This article is a good resource to understand which model might be appropriate for your
application.

When to use it?
DynamoDB can be a good fit for the following use-cases:

Serverless applications

DynamoDB works well with other serverless services like AWS Lambda and is often an
integral part of serverless applications.

Amazon DynamoDB and Serverless - The Ultimate Guide is a great resource to learn more
about how DynamoDB can be used to build serverless applications.

Applications with access patterns which are compatible with a key-value store

DynamoDB is a key-value store and doesn't support relational data structures. If your data is
self-contained and you won't need JOINs across multiple tables to query your data, then
DynamoDB might be a good fit.

Additional Resources
Some additional resources to understand when to use DynamoDB

Why Amazon DynamoDB isn’t for everyone
11 Things You Wish You Knew Before Starting with DynamoDB

Examples
Building enterprise applications using Amazon DynamoDB, AWS Lambda, and Go

This post provides a detailed example of how to build CRUD applications using DynamoDB
and Lambda. This blog post covers good practices when it comes to designing applications
using DynamoDB in production.

Event-driven processing with Serverless and DynamoDB streams

DynamoDB is an integral part of serverless architectures. This post provides examples of
how to build event-driven architectures using DynamoDB streams.

Getting Started
Helpful resources to get started with DynamoDB:

DynamoDB, explained
Data modeling with Amazon DynamoDB
Amazon DynamoDB deep dive: Advanced design patterns

https://www.trek10.com/blog/findev-dynamodb-pricing-analysis
https://www.serverless.com/dynamodb
https://read.acloud.guru/why-amazon-dynamodb-isnt-for-everyone-and-how-to-decide-when-it-s-for-you-aefc52ea9476
https://blog.yugabyte.com/11-things-you-wish-you-knew-before-starting-with-dynamodb/
https://aws.amazon.com/blogs/database/building-enterprise-applications-using-amazon-dynamodb-aws-lambda-and-golang/
https://www.serverless.com/blog/event-driven-architecture-dynamodb
https://www.dynamodbguide.com/
https://youtu.be/DIQVJqiSUkE
https://youtu.be/6yqfmXiZTlM

